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Abstract A
In this paper, we describe a method of execution retry for bypassing software faults in message-

passing applications. Based on the techniques of cting and message logging, we demon-

strate the use of message replaying and message reordering as two mechanisms for achieving

localized and fast recovery. Our approach gradually increases the rollback distance and the number

of affected processes when a previous retry fails, and is therore named progrssve revy. An

implementation as reusable modules to provide low-cost application-level software fault tolerance

is described. Examples from our experience with telecommunications software systems are given

to illustrate the benefits of the scheme.
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1 Introduction

For computer systems designed to provide continuous services to customers, availability is an

important performance measure. In such systems, software failures have been observed to be

the current major cause of service unavailability [ 1,21. Residual software faults due to untested

boundary conditions, unanticipated exceptions and unexpected execution environments have been

observed to escape the testing and debugging process and, when triggered during program ex-

ecution, cause service interruption [3]. It is therefore desirable to have effective on-line retry

mechanisms for automatically bypassing software faults and recovering from software failures in

order to achieve high availability [4-7].

A software fault in a program is triggered when the program is executed in a certain environment

and supplied with a certain set of input data. Therefore, the resulting error can potentially be

recovered by one of the following three approaches: (1) executing a different program which

implements the same function but does not contain the same fault, called the design diversity

approach; (2) executing the same program on a different set of data obtained through acceptable

transformation, called the data diversity approach [8,9]; (3) executing the same program in a

different environment, called the environment diversity approach.

N-version programming [10] and recovery blocks [11] are two well-known techniques em-

ploying design diversity. While the former executes N different implementations at the same

time and votes on the results, the latter invokes an alternate only when the previous one fails the

acceptance test. Design diversity is effective in masking software faults if the assumption that

different implementations of the same function will not contain the same fault is valid.

N-copy programming and retry blocks [9] are the counterparts of the above two techniques,

which adopt the data diversity approach. Instead of executing different programs on the same 0

data set, such techniques execute the same program on different sets of data obtained through

acceptable data reexpression algorithms. Data diversity is effective for those cases in which

reexpression algorithms can be found to express the data points from the failure region [9] in terms
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of those outside that region.

Several studies [2, 12, 13] have shown that many software failures in production systems behave

in a transient fashion, and so the simplest way to recover from such failures is to restart the system,

an approach that we call environment diversity. The term Heisenbug [1 I has been used to refer

to the software faults causing transient failures, while the term Bohrbug refers to those software

faults with deterministic behaviors. Process pairs - primary and backup running the same program

[5,14,15] - provide a way of bypassing Heisenbugs. The periodic checkpoint messages sent by

the primary enable the backup to maintain approximately the same state as the primary so that it

can quickly take over when the primary fails.

In this paper, we describe aprogressive retry technique for software failure recovery in message-

passing applications 2. The target applications are continuously-running software systems for which

fast recovery is essential and a reasonable amount of run-time overhead may not result in noticeable

service quality degradation. Many telecommunications systems fall into this category. There are

several reasons that fast recovery is desirable in applications requiring high availability. In the

cases where service quality is judged at the user interface level, small "computer down time"

involving only a small number of processes may be translated into zero "service down time." Most

importantly, when the prolonged unavailability of one part of the system may trigger the boundary

conditions in other parts of the system, localized and fast recovery can reduce the possibility of

cascading failures which may lead to a catastrophe.

Our progressive retry technique is based on checkpointing, rollback, message replaying and

message reordering. The goal is to limit the scope of rollback: the number of involved processes

as well as total rollback distance. The approach consists of several retry steps and gradually

increases the scope of rollback when a previous retry fails. Progressive retry has the following

three main contributions. First, although Heisenbugs can be bypassed by simply restarting the

system, faster recovery can often be achieved by locally "exploiting" new environments through

2We will focus on error recovery in this paper, the issue of error detection is considered elsewhere 1161.
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message replaying or "simulating" possible environments through message reordering. Second,

although Heisenbugs may constitute the majority of software faults in some environments[ 12l, our

experience indicates that many network failures resulting in extensive system outages have been

caused by rarely triggered Bohrbugs. As an extreme example, 99% Heisenbugs may contribute

only 1% of total down time because they can be easily bypassed, while the remaining 1% Bohrbugs

may cause 99% of total down time. Non-transient failures may occur when some input messages

from outside the system cannot be rolled back and the processing of such messages always leads to

the same failure. Message reordering provides an opportunity of introducing data diversity through

changing the sequence of input messages to bypass such Bohrbugs. Finally, our progressive

retry technique can be implemented in reusable software modules to be incorporated into existing

systems and shared by many different applications [ 16].

This paper is organized as follows. Section 2 gives the logical checkpoint model for rollback

recovery based on checkpointing as well as message logging; Section 3 describes the progressive

retry technique; Section 4 gives several examples to demonstrate the capability of progressive retry

for bypassing software faults; our current implementation is described in Section 5, and possible

extensions and limitations are discussed in Section 6.

2 Checkpointing and Rollback Recovery

Numerous checkpointing and rollback recovery techniques have been proposed in the literature to

recover from transient hardware failures. Uncoordinated checkpointing schemes [ 17, 181 allow

maximum process autonomy and general nondeterministic execution, but suffer from potential

domino effects [ 1]. Coordinated checkpointing schemes [ 19-211 eliminate the domino effect

by sacrificing a certain degree of process autonomy and by paying the cost of extra coordination

messages. A lazy checkpoint coordination technique [221 has been proposed as a mechanism for

bounding rollback propagation and providing a flexible trade-off between run-time coordination

overhead and recovery efficiency. Log-based recovery [23-291 assumes the piecewise deterministic
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model [301 and employs message logging and replaying to avoid domino effects.

In this paper, we apply the above techniques to software failure recovery. More specifically.

we use log-based recovery to localize the retry and use message comparison (as described later)

to verify the assumption of piecewise deterministic execution. When all localized retries fail to

bypass the software faults, a globally consistent set of checkpoints obtained through lazy checkpoint

coordination is used for large-scope rollback. In the remainder of this section, we use the example

in Fig. 1 to introduce the notion of logical checkpoints for reasoning about the two primary

mechanisms for bypassing software faults, namely, message replaying and message reordering.
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Figure 1: (a) Rollback recovery without the piecewise deterministic model; (b) message replaying,
(c) message replaying with an interrupting nondeterministic event, and (d) message reordering
under the piecewise deterministic model. (Circled checkpoints are used for the recovery.)

Without the assumption of piecewise determinism (i.e., process execution between any two

consecutive message receipts is deterministic), when process p, in Fig. 1 (a) initiates a rollback to
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checkpoint cl from the point marked "X", it unsends message mc and should request p2 to roll back

as well in order to unreceive mc, i.e., to nullify the effect of m, which has been revoked. Otherwise.

the system would have been left in an inconsistent state because cl and S2 together show that m,

is "received but not yet sent." Similarly, po also needs to roll back from So in order to unreceive

m, and Mb. As a result, the latest consistent set of states for the system to roll back, called the

recovery line, consists of co, cl and cz. In this case, all six messages are unsent and unreceived and

should be discarded.

Now suppose the assumption of a piecewise deterministic model is valid, and the message logs

(message contents and processing order) for all six messages are available. Then p, can restart

from the physical checkpoint cl and replay messages MA, MB and Mc in exactly the original order

to deterministically reconstruct the state immediately before the rollback. This can be modeled as

having an additional logical checkpoint L, immediately before the "X" mark, as shown in Fig. 1 (b).

Therefore, although pi physically rolls back to cl, it logically rolls back to L" and so does not

unsend any message. The recovery line in this case consists of the three logical checkpoints shown

as shaded squares in (b). No rollback of po or p is necessary.

Although piecewise determinism can be exploited to limit the scope of rollback, it may not be

valid throughout the entire execution. For example, some nondeterministic events may depend

on functions of real time and simply cannot be recorded and replayed. Suppose such an event e

exists in p1's execution before message m. was sent out, as shown in Fig. 1(c). Process p, can only

reconstruct its state up to L. which is immediately before event e, and all the logical checkpoints

beyond that (in this case, L.) become unavailable. The rollback of p, to LY then unsends m, and

results in the rollback of p2 to L, to unreceive m,.

Rollback propagation can also result from the processing order of MB and Mc being lost upon a

failure or being intentionally discarded to allow reordering. The latest available logical checkpoint

of p' then becomes L, (Fig. 1(d)) because any state beyond that cannot be deterministically

reconstructed. As a result, processes po and p2 are required to roll back as well to unreceive mb
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and m., respectively.

It is important to recognize which messages can be reordered and which messages must be

replayed in their original order to ensure correctness. For the example in Fig. I (d), pt must replay

message MA in the original order after restarting from ci to reach the state L. which is part of the

recovery line. Similarly, message m. must be deterministically replayed3 by po. Such messages

are drawn in solid lines. In contrast, messages MB and Mc are recorded as "sent but not yet

received" according to the recovery line. It is as though they are messages that are still traveling

in the communication channels and therefore can arrive in an arbitrary order due to unknown

transmission delay. Such messages, drawn in dashed lines, are called in-transit messages, and they

are the messages that can be reordered. Finally, messages like mb and mi, which are unsent and

unreceived with respect to the recovery line, are no longer valid. They become orphan messages,

drawn in dotted lines, and should be discarded.

3 Progressive Retry

For the purpose of presentation, we assume that (1) every message is logged before delivery

to the application process4 ; (2) only direct dependency [26,31] resulting from processing each

individual message is recorded, no transitive information is propagated; (3) centralized recovery

line computation5 is performed based on the global dependency information collected by the

process which initiates the garbage collection or recovery procedure; (4) both sender logging (of

the messages sent) and receiver logging (of the messages received) are employed.

We will use the example checkpoint and communication pattern shown in Fig. 2 to illustrate

progressive retry. Each step may involve multiple retries, depending on the application.

3For simplicity, we will use "replay" to mean "deterministically replay" throughout the paper.
4 Volatile message logs lost upon a failure in asynchronous (optimistic) logging protocols can be modeled as

unavailable logical checkpoints
5A synchronized, distributed algorithm has been proposed by Sistla and Welch [271; an asynchronous, distributed

algorithm can be found in Strom and Yemini's paper [251.
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Step 1 - Receiver replaying

In Fig. 2(a), when p2 detects an error (marked "X"), it first initiates a local recovery by rolling

back to checkpoint C and deterministically replaying the message logs. Because every message

is logged before processing, message logs for M., Mb and Mc must be available and allow p2 to

reconstruct the state up to the point it detected the error. In some cases, transient failures may be

caused by some environmental factors (such as mutual exclusive conflicts, resource unavailability,

unexpected signals, etc.) which will simply disappear after the recovery, and Step-I retry may

succeed. If the reexecution still leads to the same error, the checkpoint and message log information

is copied to a trace file for off-line debugging.

Fig. 2(b) illustrates another possible scenario. After the rollback, when p2 is about to reexecute

the sending of message M1 , it compares the newly generated message to the corresponding one in

the sender log from previous execution and detects a discrepancy. Process p2 then realizes that some

nondeterministic event e has interrupted the state reconstruction, and therefore all the messages

sent beyond that event need to be unirceived. The new recovery line (shaded squares) shown in

Fig. 2(b) reflects the resulting rollback propagation. Such a departure from previous execution

offers an additional opportunity for bypassing a software fault causing a transient failure..

Step 2 - Receiver reordering

When Step- 1 retry fails, it is likely that the failure is caused by the messages from other

processes. Since the goal of progressive retry is to limit the scope of rollback, p2 first tries

to locally simulate other possible scenarios regarding the messages without actually involving

the senders. Because one in general cannot predict the transmission delays of the incoming

communication channels, the original software could not have been written assuming a particular

ordering. Therefore, message reordering can be used to simulate different message arrival orders.
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For example, in Fig. 2(c), p2 decides to reorder the messages M., Mb and M, in its receiver log.

But once the processing order of these three messages is changed, the last three logical checkpoints

of p2 (shown in Fig. 2(a)) become unavailable and the new recovery line needs to be computed

to determine which messages can be reordered. With respect to the new recovery line, only M,

and Mb are in-transit messages available for reordering; message Me, as well as M, and Mf, now

become orphan messages and should be discarded.

There are several potentially useful algorithms for reordering the message logs. Random

reordering can be used when no knowledge about the possible cause of the software failure is

available. If the failure is possibly due to the interleaving of messages from different processes,

reordering by grouping the messages from the same process together may be useful. If the software

fault might have been triggered by exhausting all available resources, reordering the messages so

that every resource is freed at the earliest possible moment can often bypass the boundary condition.

Step 3 - Sender replaying

When p2 fails to bypass the fault through locally replaying and reordering its receiver log, it

discards all the received messages after checkpoint C and requests the senders of those messages

to participate in the Step-3 retry. The senders roll back and first try to replay their receiver logs up

to the recovery line. Even though exactly the same messages as those sent before the failure may

be generated, there are still two possibilities that are useful in bypassing the fault. First, when the

number of messages is large and the cause of the failure is totally unknown, the correct message

sequences may not be covered in the limited number of "forced" reordering in Step 2. The senders'

resending these messages provides another opportunity for obtaining a correct sequence through

"natural" reordering. Second, when a software fault is triggered by some unexpected delay in the

delivery of certain messages (such as Md in Fig. 2(d)), Step-2 retry may be insufficient because such

messages are not yet in the receiver log.. If the environmental factors that caused the unexpected

delay have disappeared during reexecution, resending such messages allows them to be included
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in the reordering (either "natural" or "forced") to bypass the fault.

As in Step 1, some nondeterministic events may interrupt the state reconstruction through

message replaying. Fig. 2(e) illustrates a possible scenario where p3, during its reexecution,

detects a discrepancy between the message M. in its previous sender log and the new message

it has generated. The different execution path beyond the nondeterministic event e then allows a

potentially more effective retry (because different messages are now sent to p2) at the expense of

involving one additional process p4 in the retry.

Step 4 - Sender reordering

When sender replaying still cannot bypass the fault, it is suspected that the error might have

originated at one of the senders, which consequently sent out erroneous messages and caused the

receiver to f.il. Therefore, the sender should take a different execution path in order to revoke the

erroneous messages.

In the example shown in Fig. 2(0, pi and p3 are requested to roll back to the logical checkpoints

before any message in p2's receiver log was sent6 . Process p, then reorders Mv and M,, and p3

reorders M., M. and M, so that the possibly erroneous message (M, or Mb), which resulted in

p2's failure, can be corrected.

Step 5 - Large-scope rollback retry

When all previous small-scope re^. 'es fail, a large-scope rollback is initiated. The simplest way

is to restart the application. However, the potentially costly state reinitialization process may result

in extensive service outage which cannot be tolerated for high-availability applications. A globally

consistent set of checkpoints can be used in such cases to achieve faster rollback retry. Because of

6process p2 in this case is similar to the exhausted importer in the Programmer-Transparent Coordination scheme
developed by Kim et aL. [321. It accuses p, and p3 of exporting erroneous information which is responsible for its own
failure, after unsuccessful local retries.
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the issue of checkpoint consistency as described in Section 2, checkpoint coordination is necessary

for obtaining a globally consistent set of checkpoints. Chandy and Lamport's distributed snapshot

algorithm [19] can be used to achieve efficient checkpoint coordination [33]. The coordinator

broadcasts a marker message to initiate the coordination. Each process takes a checkpoint upon

receiving a marker message and increments its current checkpoint interval number. The above

number is piggybacked on every message M sent so that the receiver p, can decide to take a

checkpoint before processing M for the purpose of coordination if the piggybacked number is

greater than p,'s current checkpoint interval number.

An alternative to achieving a consistent set of checkpoints is to use lazy checkpoint coordination

[22,34]. For many applications requiring high availability, it is often desirable to let each process

decide where to take checkpoints so that only critical data [16,35], instead of the entire process

state, needs to be saved and restored. If checkpoint coordination is initiated for every checkpoint

taken, there will be an unnecessarily large number of checkpoints. Another observation is that

the communication patterns of many practical applications are not very complicated. Therefore,

it is quite possible that two checkpoints taken independently by two processes are "naturally"

consistent without the need of any coordination. This leads to the concept of lazy coordination:

optimistically assuming that checkpoints which need to be consistent will be naturally consistent,

and paying the overhead of coordination only when the assumption is about to fail. An integer

parameter Z called laziness which controls the coordination frequency is specified and is known to

all processes in the system. The consistency criterion is that, for any integer n, checkpoints #nZ

of all processes must form a consistent set of checkpoints. Such a criterion can be enforced by the

receivers of certain messages taking additional checkpoints before processing the messages, based

on the piggybacked checkpoint interval numbers. Figure 3 gives an example where a "+" sign

represents a basic checkpoint initiated independently by each individual process, and a circled "+"

sign represents an induced checkpoint taken for the purpose of coordination. Figure. 3(b) illustrates

the case of Z = 1: a checkpoint is induced whenever a receiver detects that a sender's checkpoint
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interval number is greater than its own. The case of Z = 2 is shown in Fig. 3(c); the only induced

checkpoint is taken when p, at its checkpoint interval #1 is about to process a message sent from

po's checkpoint interval #2, which would have violated the consistency criterion.

The parameter Z provides a trade-off among several things. The advantages of choosing a

larger Z are (1) lower coordination overhead, i.e., less induced checkpoints (as demonstrated in

Fig. 3(c)) and (2) potentially more effective retry for recovering from errors with large latencies.

Potential disadvantages are (1) larger rollback distance which implies longer service unavailability;

(2) outputs directed to outside the system either need to wait longer before they can be released,

or they can be released immediately but more of them might be revoked as a result of rollback; (3)

larger space overhead for storing more checkpoints and message logs. Therefore, in practice, the

choice of laziness will be constrained by run-time overhead, maximum error latencies, recovery

deadlines, output delays (or penalties for revoking outputs) and stable storage space overhead,

depending on the requirements of the application.

4 Experience and Examples

In this section, we describe four examples with software faults that can be bypassed by Steps 1-4 to

demonstrate the capability of progressive retry to achieve localized and fast recovery. To simplify

the description, we have abstracted only the software components which contribute to the failures.

Step-1 retry

A telecommunication billing system consists of several processes accessing large shared data

structures in response to the incoming request messages for data access. There is only one writer

process and the others are all reader processes. Because no locking mechanism is provided to

.,aarantee mutual-exclusive accesses, there is a small probability that a reader may be accessing a

data structure while the writer is updating it (e.g., manipulating the pointers for inserting a new data
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Figure 3: (a) Checkpoint and communication pattern without any coordination; lazy checkpoint
coordination with (b) Z = 1 and (c) Z = 2.
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node). In such a case, the reader receives a segmentation violation fault and is then recovered by a

watchdog process. Once the reader is restarted and replays the request message for accessing the

same data structure again, the read operation succeeds because the writer has finished the update.

This kind of error occurs once every few days. Whenever it happens, Step-I retry can quickly

correct the error. An alternative (standard) way of dealing with this problem would be to use a

locking mechanism. However, using coarse-grain locks can result in unnecessary blocking of the

reader processes, and using fine-grain locks can incur large performance degradation and introduce

additional software complexity. Therefore, the billing system has relied on message replaying as

an alternative to locking for dealing with the concurrency problem. The approach is feasible in

this case because mutual-exclusive conflicts only occur rarely and they can be detected when they

occur.

Step-2 retry

The nDFS [36] file system provides on-line replication of critical files. It contains three main

processes: Local Replication (LR) process, Backup Read (BR) process and Backup Processing

(BP) process. All open, write and close system calls on the primary node are intercepted

by a shared library and passed to process LR, which then multiplexes system calls from different

applications and sends update messages to process BR on the backup node. Process BR is

responsible for logging the update messages and placing them into a buffer where process BP can

retrieve the messages and perform the updates. Since the number of available file descriptors for

process BP is limited and each application process could open many files at the same time, process

BP may run out of file descriptors. Therefore, it has to keep track of how many files are currently

open. A boundary condition occurs when all file descriptors are used. Process BP then searches

for an open file descriptor with the earliest access time and closes that file.

A software bug exists in the search procedure so that once process BP enters the bound-

ary condition, the search never finishes and the process BP hangs up. Process BP implements
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checkpointing and message logging and has an external hang-up detection mechanism. When it

enters the boundary condition, the failure is detected and the process is recovered by restoring the

checkpointed state and reexecuting the logged messages.

The following example illustrates how Step-2 message reordering can bypass the boundary

condition. Let ol command stand for opening file 1, wl command stand for writing data to file

1 and c 1 command stand for closing file 1. Suppose process BP can open at most 2 files at the

same time. Then the following command sequence will cause process BP to enter the boundary

condition when processing o3 and hang up.

ol o2 wl w2 o3 w3 cl c2

Suppose all the above commands are logged before the failure. When process BP is restarted, the

command log may be reordered as follows:

ol wl cl o2 w2 c2 o3 w3.

In this sequence, the boundary condition never occurs and therefore the reexecution of the command

log succeeds.

Step-3 retry

In a cross-connection system, a Channel Control Monitor (CCM) process is used to keep

track of the available channels in a switch. The CCM process receives messages from two other

processes: a Channel Allocation (CA) process which sends the channel allocation requests and a

Channel Deallocation (CD) process which sends the channel deallocation requests. A boundary

condition for CCM occurs when all channels are used and the process receives additional allocation

requests. In that case, a clean-up procedure is called to free up some channels or to block further

requests. However, the clean-up procedure contains a software fault which could cause the process

to crash.

The cross-connection system uses a daemon watchdog to detect process failures and employs
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checkpointing and message logging for recovery. The following example illustrates how progres-

sive retry works in this system. Suppose the number of available channels is 5. The command

r2 stands for requesting two channels, and the command f2 stands for freeing two channels. The

following command sequence could cause the CCM process to crash because of the boundary error.

CA sends r2 r3 rl

CDsendsf2 f3 fl

CCM receives r2 r3 rl and crashes

If the message f2 is received and logged before CCM crashes, CCM will be able to recover by

reordering the message logs. However, if CCM crashes before f2 is logged, reordering messages

r2, r3 and ri (Step 2) will not help. In this case, the local recovery of CCM fails and CA and CD

will be requested to resend their messages (Step 3). Because of the nondeterminism in operating

system scheduling and transmission delay, the messages may arrive at CCM in a different order.

For example, the message order can be

r2 f2 r3 f3 rl fl

which does not lead to the boundary condition, and hence the retry succeeds.

Step,-4 retry

We use the Signal Routing Points (SRPs) in a switching system as our fourth example. The

responsibility of SRPs is to route data packets from the originating switch to the destination switch.

Each SRP has a built-in overload control (OC) mechanism which, when the number of packets in

its buffer exceeds a threshold, sends out OC messages to other SRPs to reduce incoming traffic as

a precaution. Suppose in normal operation SRP-X can route data packets destined for a certain

switch either through SRP-A or SRP-B. When SRP-X receives an OC message from SRP-A. it

starts routing all such packets through SRP-B to avoid potential overload of SRP-A. But at the same

time, the switch directly connected to SRP-B receives a sudden burst of service requests. These
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two kinds of traffic quickly fill the buffer of SRP-B and the process crashes before any overload

control mechanism can be invoked, due to a software fault.

Local retries of SRP-B through message replaying and reordering cannot recover from the

failure because they cannot bypass the overload condition. Step-3 retry involving SRP-X message

replaying still leads to the same failure. SRP-X then initiates Step-4 retry by reordering the packets

to be routed and the OC message from SRP-A. This effectively delays the processing of the OC

message, and reduces the traffic through SRP-B to give SRP-B a chance to recover. The potential

overload for SRP-A either never happens or it can be handled gracefully without causing a software

failure.

5 Implementation

The progressive retry technique has been implemented in the libft library and the watchd

daemon [16]. Libft library is a C/C++ library which provides functions to checkpoint process

states and log messages; watchd daemon is a generic service process for detecting process failures

and restarting failed processes.

Libf t functions which are related to the progressive retry tchnique are f tread ), f twr ite ,

checkpoint (), recover (, ftreorder (), setlogfile () and in-recovery (). In

a normal operatiom, ftwrite () is used to send messages and create sender log files; f tread ( )

is used to receive messages and create receiver log files. In a recovery state, ftwrite ( ) does

not send those messages whil i-re generated by message replaying and have exact duplicates in

the sender log file already; f tread( ) reads messages from the receiver log file, instead of a

regular I/O channel. Function in-recovery () returns 0 if the calling process is in a normal

state; otherwise, it returns I if the calling process is in Step-I, Step-3 or Step-5 retry, and it returns

2 if the calling process is in Step-2 or Step-4 r.try which requires message reordering.

Functions checkpoint ( ) and recover () are used to save and restore data from a stable

storage. When an application process calls checkpoint (),it increments its checkpoint interval
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number and saves critical data onto a stable storage. Then, a message containing the checkpoint

file name, the process id and the checkpoint interval number is sent to the watchd daemon. This

information is then used by the watchd to replicate the checkpoint file onto one or more backup

machines. When an uncoordinated checkpointing scheme with lazy checkpoint coordination

is used, watchd invokes the garbage collection procedure when it detects that the checkpoint

interval numbers of all processes have reached nZ and hence a new lazy-coordinated recovery line

has been formed.

A message in a receiver log file contains six fields: message size, message content, sender

id, sender's checkpoint interval number, sender's logical checkpoint number and reference id.

Sender id is the number assigned by watchd at the start-up time of each application process that

watchd monitors. Checkpoint interval number is incremented each time when a new checkpoint

is taken; logical checkpoint number is incremented upon sending or receiving a new message.

Reference id is given by function ftwrite () and is used for message reordering in recovery.

The ftreorder () function provides a default message reordering routine which randomly

reorders messages with different reference ids but maintains the partial order for messages with the

same reference id. By specifying a reference id when ftwri te' ) is called, message dependency

can be enforced if necessary. A message in a sender log file contains only four fields: message

size, message content, receiver id and logical checkpoint number. The first two fields are used for

message comparison; the last two fields are used to perform rollback propagation for determining

the recovery line in a retry.

Watchd can also be configured to use a simplified implementation of progressive retry based

a coordinated checkpointing scheme. Upon receiving a new checkpoint interval number, watchd

sends a signal to all the other processes in the same application domain. Once the signal is

received, each process turns on a flag and takes a checkpoint when the next f tread () is called.

To decide which processes should be rolled back in a retry, watchd keeps track of the interprocess

communication patterns. When process A receives a message (via f tread ( ) ) from process B for
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the first time in its current checkpoint interval, a message including the sender id and the receiver

id is sent to the watchd. Watchd then uses this information to construct a communication

graph, and decides which processes should be involved in each step of progressive retry [20]. The

communication graph is reset each time a new recovery line is formed.

The following program shows how an application uses the libft functions to implement the

progressive retry technique.

#include <ft.h>

main () (

setlogfile( examp.log");

initialization ;

if ((i-inrecovery))>O) (

recover(INFILE);

if (i==2) /* if in step 2 or step 4 */

ftreorder( "examp.log");

for(; ;) (

if (!in_recovery))(

inso=accept(...);

)

/* receive a message from a client */

length=ftread(inso,buffer,MAXBUF);

processdata(newbuf);

outso=connect._otherprocess (;
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/* send a message to a server */

ftwrite (outso, newbuf, MAXBUF, refid);

When the program is in a normal state, it calls f tread () to receive and log a message. The

message is then processed by calling process-data (). The result is stored in newbuf and

is sent to another process by ftwrite (). Function setlogfile ( "examp. log" ) declares

that the file name for the sender log is exanp. log. send and the file name for the receiver log

isexamp.log.recv.

If the program fails (hangs or crashes) in process-data () and is restarted by watchd,

the return value of function in-recovery () becomes 1. In this case, the program restores

a checkpointed state by calling the function recover ( ). Then, it calls f tread () to read

messages from the receiver log file, instead of the regular socket channel. After a logged message

is processed, the program calls ftwrite () to compare the newly generated message to the

corresponding one in the sender log file. If they are identical (deterministic replay), no message

is sent. When all of the messages in the receiver log file are replayed successfully, function

in.recovery returns 0 and the program resumes its normal operation. Otherwise, Step-2 retry

is initiated and the program is restarted again. In step 2, the return value of in-recovery ( )

becomes 2, and the program reorders the receiver log file by calling function reorder ( ) before

reexecuting the log. If the program still fails to return to its normal operation, it will then invoke

Step-3 retry by also involving some of its senders in the recovery process.

Since checkpointing, messages logging and rollback recovery are provided by libft and

watchd, the actual number of lines of code for implementing progressive retry in an application

program is very small. For example, the nDFS file system described in Section 4 consists of more

than 60,000 lines of C code; only 10 lines are added and 15 lines are modified to incorporate
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progressive retry. The performance overhead in this case is measured to be approximately 10%.

6 Extensions and Limitations

In Step-2 retry, we considered all of the messages processed since the most recent checkpoint as

possible candidates for reordering. This would in general result in rollback propagation. Another

possibility is to allow the reordering of only those messages processed after the latest message

was sent (37]. Retry based on message reordering can then be performed locally without affecting

any other process. Similarly, in Step-5 retry, we chose the latest lazy-coordinated consistent set of

checkpoints for rollback retry; if the penalties associated with revoking outputs (released to outside

the system) are large, large-scope rollback by discarding only those logical checkpoints beyond the

latest output may be desirable [25].

Although message replaying and message reordering are effective mechanisms for bypassing

certain boundary conditions and exceptions, we have also observed failures that cannot be recovered

by these two mechanisms. For example, global overload conditions are likely to persist in spite of

the retries; exception management messages will again invoke the same faulty exception handler

during the retries. Existing solutions include temporarily suspending incoming service requests,

deactivating the defective software components, and replacing the faulty software with an earlier

stable version. Since these procedures often involve manual operations, they have become the

primary sources of extensive system outages and hence the major challenges to achieving high

availability.

7 Concluding Remarks

We have described a 5-step progressive retry technique using message logging as well as check-

pointing to limit the scope of rollback and thereby provide a means for achieving localized and fast

recovery. The technique is designed for continuously-running software systems which can absorb a
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.4

certain degree of performance overhead and significantly benefit from reduced service unavailabil-

ity. Our approach has employed message replaying for exploiting piecewise deterministic model.

message comparison for validating the above model and message reordering for introducing diver-

sity. Lazy checkpoint coordination has been incorporated to provide consistent sets of checkpoints

for the final-step large-scope retry, and can be tuned to accommodate the maximum error latency

for each application. Progressive retry has been implemented as part of a Software Fault Tolerance

Platform developed at AT&T Bell Laboratories to provide automatic, economical, effective and

efficient software failure recovery. Future research includes combining different approaches to

software fault tolerance and integrating progressive retry with transaction recovery [38,39].
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